SET	C

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION 2023 MATHEMATICS - 041

CLASS:X Max.Marks: 80

	MARKING SCHEME					
2 (c) 2×7^2 3 (a) 240 4 (d) 10 5 (c) $\frac{12}{13}$ 6 (b) AA similarity criterion 7 (a) $+2\sqrt{3}$, $-2\sqrt{3}$	RKS IT UP					
3 (a) 240 4 (d) 10 5 (c) $\frac{12}{13}$ 6 (b) AA similarity criterion 7 (a) $+2\sqrt{3}$, $-2\sqrt{3}$						
4 (d) 10 5 (c) $\frac{12}{13}$ 6 (b) AA similarity criterion 7 (a) $+2\sqrt{3}$, $-2\sqrt{3}$						
$5 \qquad (c) \frac{12}{13}$ $6 \qquad (b) AA similarity criterion$ $7 \qquad (a) +2\sqrt{3}, -2\sqrt{3}$						
6 (b) AA similarity criterion $7 (a) +2\sqrt{3}, -2\sqrt{3}$						
7 (a) $+2\sqrt{3}$, $-2\sqrt{3}$						
8 (c) 20						
9 (a) 3 : 1						
10 (b) -1						
11 (d)4 units						
12 (a) 16 cm						
13 (b) 6						
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).						
15 $(d)^{\frac{1}{7}}$						
16 (b) 10 cm						

17	(b) 2				
18	(a) 26				
19	(d) Assertion (A) is false but reason(R) is true.				
20	(b) 1.5				
	(0) 1.3				
21	$S = (3 + \sqrt{2}) + (3 - \sqrt{2}) = 6$	1/2			
	$P = (3 + \sqrt{2}) \times (3 - \sqrt{2}) = (3)^2 - (\sqrt{2})^2 = 9 - 2 = 7$	1/2			
	Quadratic polynomial = $x^2 - Sx + P = x^2 - 6x + 7$				
22	AB = 10 units [Given				
	$AB^2 = 10^2 = 100 \dots [Squaring both sides]$	1			
	$(11-3)^2 + (y+1)^2 = 100$				
	$8^2 + (y+1)^2 = 100$				
	$(y+1)^2 = 100 - 64 = 36$	1			
	$y + 1 = \pm 6$ [Taking square-root on both sides	1			
	$y = -1 \pm 6 : y = -7 \text{ or } 5$				
	OR	1			
	Area of $\triangle ABC = \frac{1}{2} \times base \times corr$, altitude	1			
	$=\frac{1}{2} \times 5 \times 3 = 7.5 \text{ sq.units}$				
	2 NO NO SQUAME	1			
23	Table	1			
	Median = 340	1			
24	HCF = 10	1			
	LCM = 300	1			
25	a = 2, b = -4, c = 4	1/2			
	$b^2 - 4ac = -16 < 0$	1			
	No real root	1/2			
	OR				
	Roots are $\frac{2}{3}$ and $-\frac{1}{2}$	1+1			
26	Volume of cone	1/2			
	Volume of cylinder	1/2			
	Volume of hemisphere	1/2			
	Total volume	1			
	Conclusion	1/2			

0.7		E' 1/		
27	Given: ABCD is parallelogram circumscribing a circle.	Fig ½		
	To prove: ABCD is a rhombus	1/2		
	Proof: We have, $DR = DS$ (i)			
	[Lengths of tangents drawn from an external point to a circle are equal]			
	Also, $AP = AS$ (ii) D R C			
	$BP = BQ \qquad(iii)$	1		
	CR = CQ(iv)	1		
	Adding (i) , (ii) , (iii) and (iv) ,	17		
	(DR + CR) + (AP + BP) = (DS + AS) + (BQ + CQ)	1/2		
	$\Rightarrow \qquad CD + AB = AD + BC$			
	⇒ 2AB = 2AD [: In parallelogram, opposite sides are equal			
	AB = CD and AD = BC			
	\Rightarrow AB = AD			
	$\therefore AB = AD = BC = CD$	1/2		
	Hence, ABCD is a rhombus as all sides are equal in rhombus.			
	OR			
	Given: A quadrilateral ABCD which circumscribes a circle. D R C	Fig ½		
	Let it touches the circle at P, Q, R and S as shown in figure.			
	To Prove: $AB + CD = AD + BC$			
	Proof: We know that the lengths of the tangents drawn from a point	1		
	outside the circle to the circle are equal.	1		
	$\therefore AP = AS; BP = BQ; CQ = CR \text{ and } DR = DS \qquad(i)$ Consider $AP + CP = AP + BP + CP + BP$			
	Consider, $AB + CD = AP + PB + CR + RD$ $= AS + BO + CO + DS$			
	$= AS + BQ + CQ + DS \qquad \qquad \text{[using (i)]}$ $= (AS + DS) + (BO + CO) = AD + BC$			
28	= (AS + DS) + (BQ + CQ) = AD + BC We have, $6x^2 - 3 - 7x$			
20	$= 6x^2 - 7x - 3$			
	= (2x-3)(3x+1)	1		
	Zeroes are:	1		
	2x - 3 = 0 or $3x + 1 = 0$			
	Therefore $x = 3/2$ or $x = -1/3$	1		
	Verification:	_		
	Here $a = 6$, $b = -7$, $c = -3$			
	Sum of the zeroes $(\alpha + \beta) = 3/2 + (-1/3) = (9 - 2)/6 = 7/6$			
	$7/6 = -$ (coefficient of x)/(Coefficient of x^2) = -b/a			
	Product of Zeroes $(\alpha \times \beta) = 3/2 \times (-1/3) = -3/6$			
	$-3/6$ = Constant term / Coefficient of $x^2 = c/a$			
	Therefore, Relationship holds	1		

29	The total surface area of the solid =Total surface area of the cube+Curved surface area of the hemisphere–Area of the base of the hemisphere. $= 6a^2 + 2\pi r^2 - \pi r^2$ $= \left[6\times 10^2 + 2\times 3.14\times 5^2 - 3.14\times 5^2\right] \text{ cm}^2$ $= 600 + 157 - 78.5 = 678.5 \text{ cm}^2$ Cost of painting=Rs.5 per 100cm^2	1/2
	∴,Cost of painting the solid= $678.5 \times \frac{5}{100}$ =Rs.33.90	2
	Hence, the approximate cost of painting the solid so formed is Rs.33.90	, -
30	(i)7/20 (ii)1/5 (iii)1/20 OR (i)1/4 (ii)1/18 (iii)1/6	1+1+1
31	Let the large number be x. Square of the larger number = x^2 Square of the small number = $8x+8$ $x^2 - 8x - 8 = 145$ $\Rightarrow x = -9$ (or) $x = 17$ Larger no = 17 Square of small no=144 Small no=12 The numbers are 17 and 12	1 1
32	Statement Proof $ \frac{AD}{DB} = \frac{AE}{EC} $ $ \frac{x}{x+1} = \frac{x+3}{x+5} $ Simplification $x=3$	1 2 1/2 1/2 1/2 1/2
33	Proof 1 st part Proof 2 nd part	3 2

34	Class interval	Mid-values (x _i)	Frequency ($u_i = \frac{x_i - 50}{20}$	$f_i u_i$	
	0–20	10	17	-2	-34	
	20-40	30	f_1	-1	<i>-</i> f ₁	
	40–60	50	32	0	0	
	60–80	70	f_2	1	f_2	
	80–100	90	19	2	38	
	Total		$\Sigma f_i = 68 + f_1 -$	+ f ₂	$\Sigma f_i u_i = 4 - f_1 + f_2$	2
	Therefore, f ₁ – Solving we get	$f_1 = 28$ and f_2 OR	= 24		_	1
	Index		f weeks (f _i)	<i>c.f.</i>		
	1500-1 1600-1	700	3 11 <i>f</i> ₀	3 14		
	1700-1	800	$12 f_1$	26		
	1800-1 1900-2		7 f ₂	33 42		
	2000-2		8	50		
	2100-2		$\frac{2}{f_i = 52}$	52		2
		$\frac{n}{2} = \frac{52}{2} = 2$				
		n class is 170 $n = l + \frac{\frac{n}{2} - 1}{l}$				
			$\left(\frac{12}{12} \times 100\right)$	= 1800		11/2
	⇒ Modal	um frequer class is 170	0-1800			
		$= l + \frac{f_1}{2f_1 - 1}$				
		$= 1700 + \frac{1}{24}$	$\frac{12-11}{4-11-7}$	< 100		
						11/2

= $1716.\overline{6}$ or 1716.67 (approx.)

35	Volume of cone is,	Volume of cylinder is,			
	$=\frac{1}{3}\pi r^2 h$	$= \pi r^2 h$	1½		
	12	$=\pi\times60^2\times180$	44.		
	$= \frac{1}{3}\pi \times 660^2 \times 120$ $= 14000\pi \text{cm}^3$	$= 648000\pi \text{cm}^3$	1½		
		77.1 (, 10. 1.1	907 * 700		
	Volume of hemisphere is,	Volume of water left in cylinde	r is		
	$=\frac{4}{3}\pi r^3 h$	$= \pi r^2 h - \frac{1}{3} \pi r^2 h - \frac{4}{3} \pi r^3 h$	1		
	21	$=(648000-288000)\pi$			
	$=\frac{2}{3}\pi 60^3 h$	$= 360000\pi$			
	$= 144000\pi \text{cm}^3$	$= 1130400 \text{cm}^3$	1		
	OR				
	Radius of the conical part, $r = \frac{5}{2}$ cm.	_ 5 cm 			
	Height of the conical part, $h = 6$ cm.	6 cm			
	Radius of the cylindrical part, $R = \frac{3}{2}$ c	m. •			
	Height of cylindrical part, $H = (26 - 6)$ cm = 20 cm.				
	Slant height of the conical part,				
	$l = \sqrt{r^2 + h^2} = \sqrt{\left(\frac{5}{2}\right)^2 + 6^2}$ cm				
	$= \sqrt{\frac{25}{4} + 36} \text{ cm} = \sqrt{\frac{169}{4}} \text{ cm} = \frac{13}{2} \text{ cm}$	cm. 3 cm	1		
	Area to be painted orange				
	 = curved surface area of the cone + base area of the cone – base area of the cylinder 				
	$= \pi rl + \pi r^2 - \pi R^2 = \pi (rl + r^2 - R^2)$				
	$= \left[3.14 \times \left(\frac{5}{2} \times \frac{13}{2} + \frac{5}{2} \times \frac{5}{2} - \frac{3}{2} \times \frac{3}{2} \right) \right]$	cm ²	1		
	$= \left[3.14 \times \left(\frac{65}{4} + \frac{25}{4} - \frac{9}{4} \right) \right] \text{ cm}^2 = \left(3 + \frac{3}{4} + \frac{25}{4} - \frac{9}{4} \right) $	$14 \times \frac{81}{4}$ cm ²	1		
	$= (3.14 \times 20.25) \text{ cm}^2 = 63.585 \text{ cm}^2.$				
	Area to be painted yellow = curved surface area of the cylind				
	$+ ba$ $= 2\pi RH + \pi R^2 = \pi R(2H + R)$	se area of the cylinder			
	$= 2\pi RH + \pi R^2 = \pi R(2H + R)$ $= \left[3.14 \times \frac{3}{2} \times \left(2 \times 20 + \frac{3}{2} \right) \right] \text{ cm}^2$				
	$= \left(3.14 \times \frac{3}{2} \times \frac{83}{2}\right) \text{cm}^2 = \left(\frac{781.86}{4}\right) \text{cm}^2$				
	(2 2) (4)		1		

 $= 195.465 \text{ cm}^2$.

1

36	(i)50m	1
	(ii)30m	1
	(iii) 24m	2
	OR	
	(iii)36m	
37	(i)0 units	1
	(ii)(4,2)	1
	(iii)Ramesh travels more	2
	OR	
	(iii) Library	
38	(i)distance = (speed)x time	1
	(ii) $x^2 + 30x - 400 = 0$	1
	(iii)10 km/hour	2
	OR	
	(iii)1.5 hour	